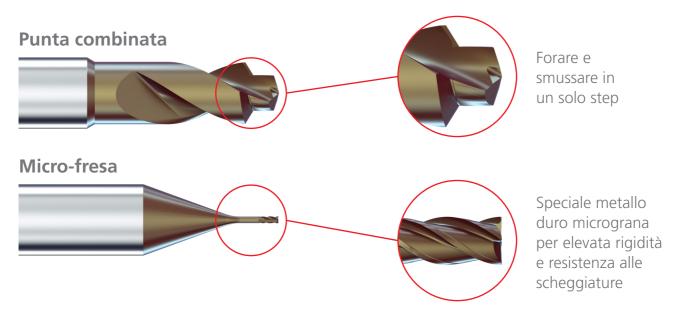

In 1 MIKRON TOOL

IL NUOVO CONCETTO DI LAVORAZIONE



IL NUOVO CONCETTO PER LA LAVORAZIONE DELLA SUA CAVA "TORX®"

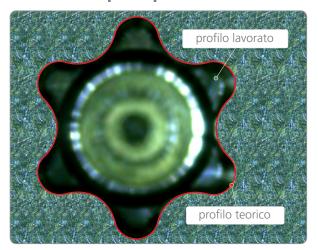
Nuovo concetto

- Forare Smussare Fresare Sbavare: quattro operazioni in tre step con due utensili.
- Lavorazione ad alta efficienza con tempi più brevi per titanio e acciaio inossidabile.

Caratteristiche di prestazione

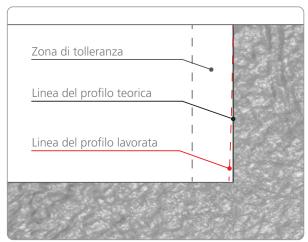
- Massima rigidità
- Nuova geometria di taglio

I suoi vantaggi


- Processo di fresatura più corto
- Massima precisione del profilo
 - Eccellente qualità della superficie
 - Bave minime

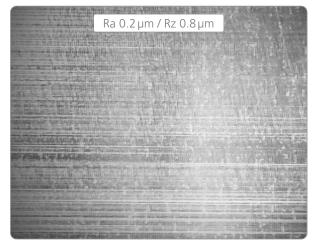
Massime prestazioni per cave esalobate

SOLUZIONE "CHIAVI IN MANO" PER TITANIO E ACCIAIO INOSSIDABILE

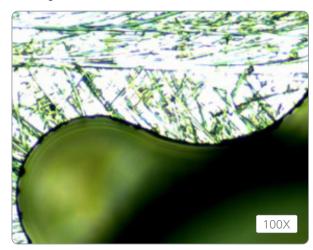


Profilo quasi perfetto

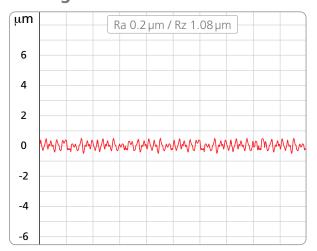
Perfetta corrispondenza del profilo.


Perpendicolarità

Geometria del profilo garantita.


Qualità e prestazioni

Qualità della superficie


Eccellente qualità della superficie.*1

Quasi senza sbavature

Profilo di lavorazione con sbavature minime.

Rugosità dello smusso

Rugosità minima sulla superficie dello smusso.*1

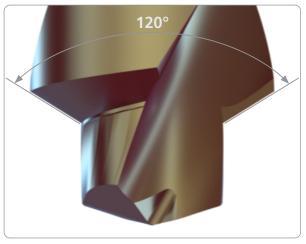
■ Tempo ciclo della fresatura

Tipo di torx	Tempo [s]	
T6	27	
Т8	24	
T10	22	
T15	22	
T20	21	
T25	20	

Lavorazione con la versione 3.5 x d nel titanio con $p = 0.4 \times d.^{*1}$

Nota *1: La qualità ed il tempo ciclo dipendono dai dati di taglio e dalle condizioni della macchina.

Foratura efficiente di cave esalobate


CrazyDrill Hexalobe

La nuova punta combinata per cave "Torx®"

Caratteristiche

Due in uno

Il pre-foro e lo smusso a 120° sono eseguiti in un'unica operazione.

■ Due geometrie di taglio

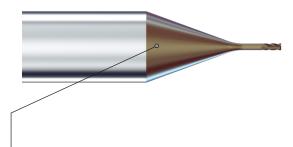
Due tipi di punte sono state sviluppate per lavorare con massime prestazioni il titanio e l'acciao inossidabile.

■ Gamma di diametri

Diametri standard per la pre-foratura di cave "Torx®" da T4 a T30.

■ Su richiesta

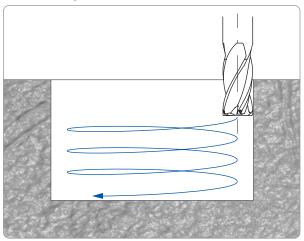
Dimensioni su misura disponibili su richiesta.


Rivestimento

Rivestimento senza cromo per evitare contaminazioni incrociate su componenti medicali.

CrazyMill Hexalobe

La nuova micro-fresa per cave "Torx®"



Prestazioni

Condizioni di taglio reali

Condizioni di lavorazione testate e approvate per una migliore esecuzione del processo e della vita utile dell'utensile

Interpolazione elicoidale

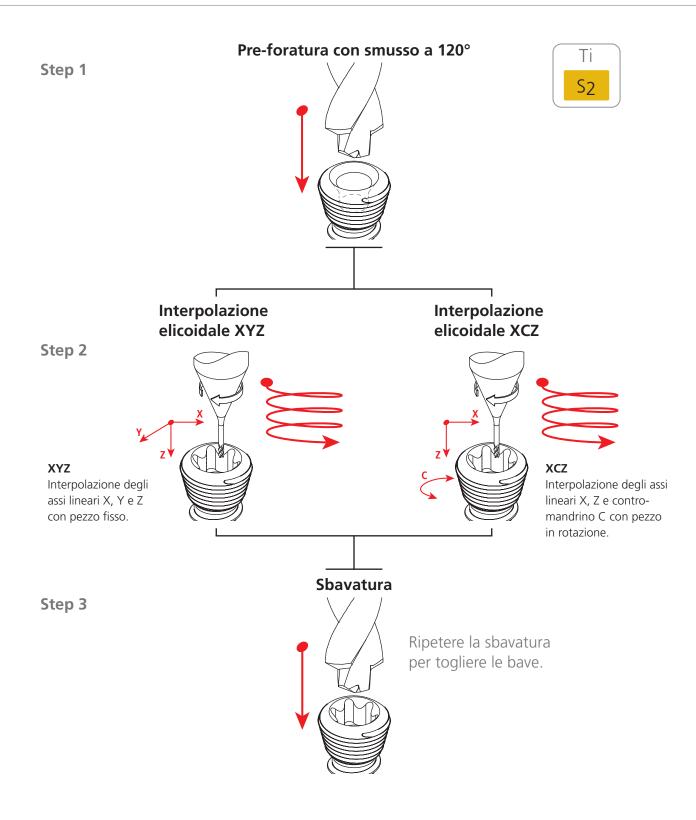
Con un passo più elevato fino a 0.8 x d.

Nuovo metallo duro

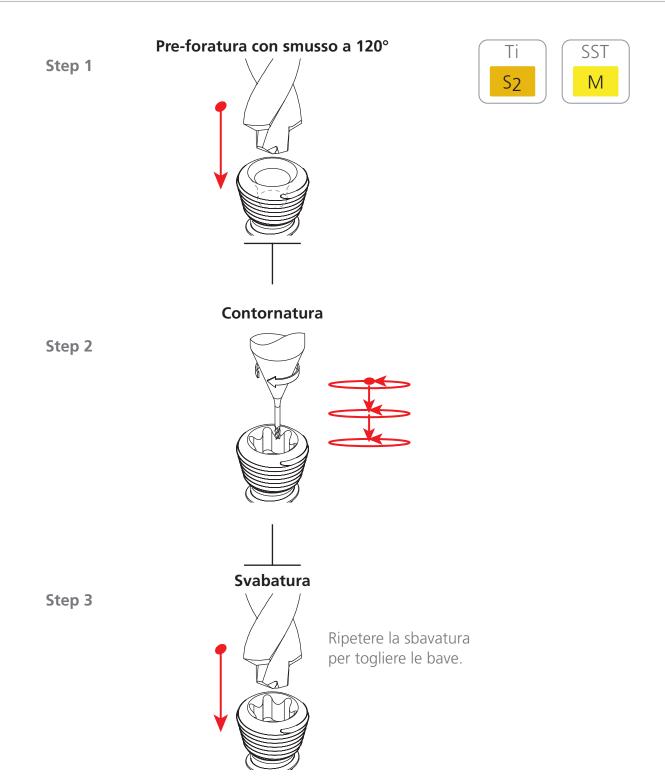
Lo speciale metallo duro micrograna con elevata rigidità e resistenza alle scheggiature è stato sviluppato per garantire un'elevata precisione del profilo.

■ Due geometrie di taglio

Due tipi di punte sono state sviluppate per lavorare con massime prestazioni il titanio e l'acciao inossidabile.


Rivestimento

Rivestimento senza cromo per evitare contaminazioni incrociate su componenti medicali.


Processo di lavorazione

INTERPOLAZIONE ELICOIDALE PER TITANIO

Nota: il processo con interpolazione elicoidale è ottimale per il titanio, si risparmia fino al 20% del tempo ciclo rispetto al processo di contornatura.

CONTORNATURA PER TITANIO E ACCIAIO INOSSIDABILE

CrazyDrill Hexalobe

1 | GAMBO

NEW

Il gambo rinforzato in metallo duro garantisce la stabilità, un elevato grado di concentricità e quindi la massima precisione di foratura.

2 | METALLO DURO

Lo speciale metallo duro micrograna sviluppato soddisfa tutte le esigenze in termini di proprietà meccaniche.

3 | NUOVO RIVESTIMENTO

Il rivestimento di elevata prestazione eXedur SNP è resistente al calore e all'usura, previene il tagliente di riporto e favorisce l'evacuazione uniforme dei trucioli. Il risultato è una lunga durata di vita dell'utensile.

4 | SMUSSO A 120°

Il pre-foro e lo smusso a 120° sono eseguiti in un'unica operazione.

5 | GEOMETRIA DI TAGLIO

Due specifiche geometrie sono state sviluppate per la lavorazione di:

- **■** Titanio
- Acciaio inossidabile

Sono garantite una buona rottura e una rapida evacuazione dei trucioli.

Rivestito Lub. esterna

Rivestito Lub. esterna

SST-Inox

Punta dell'utensile

Punta dell'utensile

CrazyMill Hexalobe

Titanium SST-Inox 3.5 x d | 5 x d 3.5 x d | 5 x d Rivestito Rivestito Lub. esterna Lub. esterna 2 2 3 3

Gamma di diametri Ø 0.2 - 0.3 mm 3 Taglienti

Testa della fresa

Ø 0.4 - 1.0 mm

NEW

1 | GAMBO

Il robusto gambo in metallo duro garantisce una fresatura stabile e senza vibrazioni. Permette un elevata precisione ed un'eccellente qualità della superficie.

2 | NUOVO METALLO DURO

A causa dell'elevata tenacità e della bassa conducibilità termica del titanio e dell'acciaio inox, è stato sviluppato uno speciale metallo duro micrograna con elevata rigidità e resistenza alle scheggiature per soddisfa tutte le esigenze in termini di proprietà meccaniche.

3 | NUOVO RIVESTIMENTO

Il rivestimento di elevata prestazione eXedur SNP è resistente al calore e all'usura, previene il tagliente di riporto e favorisce l'evacuazione uniforme dei trucioli. Il risultato è una lunga durata di vita dell'utensile.

4 | GEOMETRIA DI TAGLIO

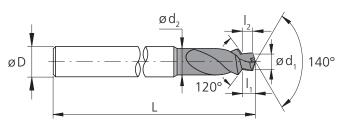
Due specifiche geometrie sono state sviluppate per la lavorazione di:

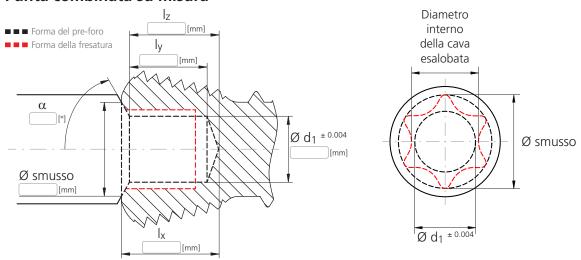
- **■** Titanio
- Acciaio inossidabile

Esecuzione senza vibrazioni per lavorazioni con interpolazione elicoidale.

CrazyDrill Hexalobe

Metallo duro




Dimensioni secondo ISO 10664

Tipo di Torx	d ₁ 0/-0.008 [mm]	I ₁ [mm]	d ₂ [mm]	l ₂ [mm]	D (h6) [mm]	L [mm]	Numero articolo		SST-Inox	Disponibilità
T4	0.9	0.70	1.7	0.56	3	40	2.CD.006090.120	.T	.l	
T5	1.0	0.87	2.0	0.72	3	40	2.CD.007100.120	.T	.l	
T5	1.0	0.75	2.0	0.59	3	40	2.CD.006100.120	.T	.l	
T6	1.2	1.06	2.2	0.88	3	40	2.CD.007120.120	.T	.l	
T6	1.2	0.86	2.2	0.67	3	40	2.CD.006120.120	.T	.l	
T7	1.4	1.05	3.0	0.83	3	40	2.CD.006140.120	.T	.l	
T7	1.4	1.01	3.0	0.79	3	40	2.CD.005140.120	.T	.l	
T8	1.6	1.40	3.0	1.15	3	40	2.CD.007160.120	.T	.l	
T8	1.6	1.05	3.0	0.81	3	40	2.CD.005160.120	.T	.l	
T10	1.9	1.42	4.0	1.13	4	40	2.CD.005190.120	.T	.l	
T15	2.3	1.78	4.0	1.42	4	50	2.CD.006230.120	.T	.l	
T20	2.7	2.12	5.0	1.70	6	50	2.CD.006270.120	.T	.l	
T25	3.1	2.84	6.0	2.36	6	50	2.CD.007310.120	.T	.l	
T30	3.8	3.52	6.0	2.93	6	50	2.CD.008380.120	.T	.l	
T30	3.8	3.04	6.0	2.45	6	50	2.CD.007380.120	.T	.l	

[■] Articolo a stock

Punta combinata su misura

Mikron Tool ha un team internazionale di esperti di tecnologia utensili che sono lieti di soddisfare i suoi bisogni e le sue richieste specifiche.

Lei può:

contattarci

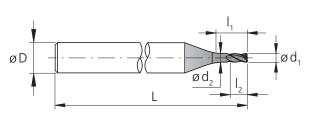
mto@mikron.com

CrazyMill Hexalobe

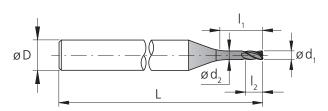
NEW

Metallo duro

Z 3-4



Versione corta


I₁ = lunghezza utile l₂ = lunghezza del tagliente

Tipo di Torx	d ₁ 0/-0.01 [mm]	I ₁ [mm]	l ₂ [mm]	d ₂	D (h6) [mm]	L [mm]	Z [Denti]	Numero articolo Titanium	Numero articolo SST-Inox	Disponibilità
T4	0.20	0.70	0.30	0.19	4	40	3	2.CMT35.B1Z3.020.1	2.CMI35.B1Z3.020.1	
T5	0.25	0.875	0.40	0.23	4	40	3	2.CMT35.B1Z3.025.1	2.CMI35.B1Z3.025.1	
T6 / T7	0.30	1.05	0.45	0.28	4	40	3	2.CMT35.B1Z3.030.1	2.CMI35.B1Z3.030.1	-
T8 / T10	0.40	1.40	0.60	0.38	4	40	4	2.CMT35.B1Z4.040.1	2.CMI35.B1Z4.040.1	
T10/T15	0.50	1.75	0.75	0.47	4	40	4	2.CMT35.B1Z4.050.1	2.CMI35.B1Z4.050.1	
T20	0.60	2.10	0.90	0.56	4	40	4	2.CMT35.B1Z4.060.1	2.CMI35.B1Z4.060.1	
T25	0.80	2.80	1.20	0.75	4	40	4	2.CMT35.B1Z4.080.1	2.CMI35.B1Z4.080.1	
T30	1.00	3.50	1.50	0.94	4	40	4	2.CMT35.B1Z4.100.1	2.CMI35.B1Z4.100.1	

[■] Articolo a stock

Versione lunga

 I_1 = lunghezza utile l_2 = lunghezza del tagliente

Tipo di Torx	d ₁ 0/-0.01 [mm]	I ₁ [mm]	l₂ [mm]	d ₂	D (h6) [mm]	L [mm]	Z [Denti]	Numero articolo Titanium	Numero articolo SST-Inox	Disponibilità
T4	0.20	1.00	0.30	0.19	4	40	3	2.CMT35.C1Z3.020.1	2.CMI35.C1Z3.020.1	
T5	0.25	1.25	0.40	0.23	4	40	3	2.CMT35.C1Z3.025.1	2.CMI35.C1Z3.025.1	
T6 / T7	0.30	1.50	0.45	0.28	4	40	3	2.CMT35.C1Z3.030.1	2.CMI35.C1Z3.030.1	
T8 / T10	0.40	2.00	0.60	0.38	4	40	4	2.CMT35.C1Z4.040.1	2.CMI35.C1Z4.040.1	
T10/T15	0.50	2.50	0.75	0.47	4	40	4	2.CMT35.C1Z4.050.1	2.CMI35.C1Z4.050.1	
T20	0.60	3.00	0.90	0.56	4	40	4	2.CMT35.C1Z4.060.1	2.CMI35.C1Z4.060.1	
T25	0.80	4.00	1.20	0.75	4	40	4	2.CMT35.C1Z4.080.1	2.CMI35.C1Z4.080.1	
T30	1.00	5.00	1.50	0.94	4	40	4	2.CMT35.C1Z4.100.1	2.CMI35.C1Z4.100.1	

[■] Articolo a stock

Pre-foratura

Gruppo materiali	Materiale	Mat. no.	DIN	AISI/ASTM/UNS	V _c [m/min]
M	Acciai inossidabili austenitici	1.4435 1.4441	X2CrNiMo 18-14-3 X2CrNiMo 18-15-3	AISI 316L AISI 316LM	25 – 35
S ₂	Leghe di titanio	3.7165 9.9367	TiAl6V4 TiAl6Nb7	ASTM B348 / F136 ASTM F1295	20 – 30

Interpolazione elicoidale (XYZ / XCZ) - 3.5 x d / 5 x d

	Cuma					p (pa	asso)
Gruppo materiali	Materiale	Mat. no.	DIN	AISI/ASTM/UNS	3.5 x d1	5 x d1	
	C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.7165 TiAl6V4		ASTM B348 / F136		
3 ₂		Leghe di titanio	9.9367	TiAl6Nb7	ASTM F1295	0.2 - 0.8 x d1	0.1 - 0.4 x d1

Nota: in caso di $p = 0.8 \times d1$ diminuire l'avanzamento f_z del 30% per aumentare la vita utile dell'utensile e la precisione del profilo.

Contornatura - 3.5 x d / 5 x d

Gruppo materiali	Materiale	Mat. no.	DIN	AISI/ASTM/UNS	a _{p, max}	a _e		
M	Acciai inossidabili austenitici	1.4435 1.4441	X2CrNiMo 18-14-3 X2CrNiMo 18-15-3	AISI 316L AISI 316LM	0.5 x d1	0.1 x d1		
S ₂	Leghe di titanio	3.7165 9.9367	TiAl6V4 TiAl6Nb7	ASTM B348 / F136 ASTM F1295	0.5 x d1	variabile		

Informazione generale: i dati di taglio sono stati testati ed approvati con n = 30'000 - 40'000 rpm, valori differenti di velocità di taglio potrebbero influire sulla durata di vita dell'utensile.

V_c [m/min] **f** [mm/giro]

T4 Ød1 ^{0.9} mm f	T5 Ød1 1.0 mm f	T6 Ød1 1.2 mm f	T7 Ød1 1.4 mm f	T8 Ød1 1.6 mm f	T10 Ød1 1.9 mm	T15 Ød1 2.3 mm f	T20 Ød1 2.7 mm f	T25 Ø d1 3.1 mm f	T30 Ød1 3.8mm f	
0.02 - 0.03	0.02 - 0.03	0.03 - 0.04	0.03 - 0.04	0.03 - 0.04	0.05 - 0.06	0.05 - 0.06	0.06 - 0.07	0.07 - 0.08	0.07 - 0.08	
0.010 - 0.015	0.010 - 0.015	0.012 - 0.018	0.014 - 0.020	0.015 - 0.025	0.020 - 0.030	0.025 - 0.035	0.025 - 0.040	0.030 - 0.045	0.045 - 0.070	

V_c [m/m	nin]												($- \mathcal{M} $	1 // 1	
f _z [mm]]													\//	/	
p [mm]]														d ₁	
T4		T4 T5 T6 - T7		- T7	T8 -	T10	T10 -	T15	T20		T25		T30			
Ød1 0.20 mm		Ød1 0.25 mm		Ød1 0.30 mm		Ød1 0.40 mm		Ød1 0.50 mm		Ød1 0.60 mm		Ød1 0.80 mm		Ød1 1.00 mm		
\mathbf{V}_{c}	f _z	V _c	f _z	V _c	f _z	\mathbf{V}_{c}	f _z	V _c	f _z	V _c	f _z	V _c	f _z	V _c	f _z	
20 - 40	0.0010	25 - 50	0.0010	30 - 60	0.0010	40 - 75	0.0015	50 - 90	0.0020	60 - 100	0.0025	70 - 130	0.0030	80 - 140	0.0040	
20 - 40	0.0010	23 - 30	0.0010	30 - 00	0.0010	40 - 73	0.0013	30 - 30	0.0020	00 - 100	0.0023	70 - 130	0.0030	80 - 140	0.0040	

	V _c [m/m f _z [mm]	-	a_p [mm] a_e [mm]											ļ +		d ₁	
	T4 Ø d1 0.20 mm		Ød1 Ød1		d1	T6 - T7 Ød1 0.30 mm T8 - T10 Ød1 0.40 mm		11	T10 - T15 Ød1 0.50 mm		T20 Ød1 0.60 mm		T25 Ød1 0.80 mm		T30 Ød1 1.00 mm		
	V _c	f _z	V _c	f _z	V _c	f _z	V _c	f_z	V _c	f _z	V _c	f_z	V _c	f _z	V _c	f_z	
	20 - 40	0.0015	25 - 50	0.0025	30 - 60	0.0030	40 - 75	0.0045	50 - 90	0.0060	60 - 100	0.0065	70 - 130	0.0080	80 - 140	0.0100	
	20 - 40	0.0015	25 - 50	0.0025	30 - 60	0.0030	40 - 75	0.0045	50 - 90	0.0060	60 - 100	0.0065	70 - 130	0.0080	80 - 140	0.0100	

In MIKRON TOOL

Sede principale e produttiva

MIKRON SWITZERLAND AG, AGNO

Division Tool Via Campagna 1 6982 Agno Svizzera

Tel. +41 91 610 40 00 Fax. +41 91 610 40 10 mto@mikron.com

Fabbricazione e servizio di riaffilatura

MIKRON GMBH ROTTWEIL

Abteilung Werkzeuge Berner Feld 71 78628 Rottweil Germania

Tel. +49 741 5380 450 Fax. +49 741 5380 480 info.mtr@mikron.com America del Nord e del Sud vendita

MIKRON CORP. MONROE

200 Main Street Monroe, CT 06468 USA Tel. +1 203 261 3100

Fax. +1 203 268 4752 mmo@mikron.com

Cina vendita

MIKRON TOOL SHANGHAI LTD.

Room A209, Building 3, No. 526, 3rd East Fute Road, Shanghai, 200131 P. R. China Tel. +86 21 2076 5671

Fax. +86 21 2076 5562 mtc@mikron.com 地址:中国(上海)自由贸易试验区

中国上海市富特东三路526号3号楼第二层 A209室

A209室 邮编: 200131

www.mikrontool.com www.youtube.com/mikrongroup

